Laurent expansion of harmonic zeta functions
نویسندگان
چکیده
منابع مشابه
Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملBeta-expansion and continued fraction expansion over formal Laurent series
Let x ∈ I be an irrational element and n 1, where I is the unit disc in the field of formal Laurent series F((X−1)), we denote by kn(x) the number of exact partial quotients in continued fraction expansion of x, given by the first n digits in the β-expansion of x, both expansions are based on F((X−1)). We obtain that lim inf n→+∞ kn(x) n = degβ 2Q∗(x) , lim sup n→+∞ kn(x) n = degβ 2Q∗(x) , wher...
متن کاملA lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملZeta Functions
We review various periodic orbit formulae for the zeta function whose zeros represent semiclassical approximations to the energy levels of chaotic systems. In particular, we focus on the Riemann-Siegel-resummed expression. The emphasis is on the ability of such formulae to reproduce the analytic properties of the spetral determinant, whose zeros are the exact quantum levels. As an example, the ...
متن کاملTowards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters
We prove the following theorems: 1) The Laurent expansions in ε of the Gauss hypergeometric functions 2F1(I1 + aε, I2 + bε; I3 + p q + cε; z), 2F1(I1 + p q + aε, I2 + p q + bε; I3+ p q + cε; z) and 2F1(I1+ p q +aε, I2+ bε; I3 + p q + cε; z), where I1, I2, I3, p, q are arbitrary integers, a, b, c are arbitrary numbers and ε is an infinitesimal parameter, are expressible in terms of multiple poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2020
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.124309