Laurent expansion of harmonic zeta functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function

Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.

متن کامل

Beta-expansion and continued fraction expansion over formal Laurent series

Let x ∈ I be an irrational element and n 1, where I is the unit disc in the field of formal Laurent series F((X−1)), we denote by kn(x) the number of exact partial quotients in continued fraction expansion of x, given by the first n digits in the β-expansion of x, both expansions are based on F((X−1)). We obtain that lim inf n→+∞ kn(x) n = degβ 2Q∗(x) , lim sup n→+∞ kn(x) n = degβ 2Q∗(x) , wher...

متن کامل

A lower estimate of harmonic functions

We shall give a lower estimate of harmonic‎ ‎functions of order greater than one in a half space‎, ‎which‎ ‎generalize the result obtained by B‎. ‎Ya‎. ‎Levin in a half plane‎.

متن کامل

Zeta Functions

We review various periodic orbit formulae for the zeta function whose zeros represent semiclassical approximations to the energy levels of chaotic systems. In particular, we focus on the Riemann-Siegel-resummed expression. The emphasis is on the ability of such formulae to reproduce the analytic properties of the spetral determinant, whose zeros are the exact quantum levels. As an example, the ...

متن کامل

Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters

We prove the following theorems: 1) The Laurent expansions in ε of the Gauss hypergeometric functions 2F1(I1 + aε, I2 + bε; I3 + p q + cε; z), 2F1(I1 + p q + aε, I2 + p q + bε; I3+ p q + cε; z) and 2F1(I1+ p q +aε, I2+ bε; I3 + p q + cε; z), where I1, I2, I3, p, q are arbitrary integers, a, b, c are arbitrary numbers and ε is an infinitesimal parameter, are expressible in terms of multiple poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2020

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.124309